[OJ] Lowest Common Ancestor
LintCode 88. Lowest Common Ancestor (Medium)
LeetCode 236. Lowest Common Ancestor of a Binary Tree (Medium)
今天写了三种解法, 都比较长.
解法1 前序递归DFS, 计数
这个解法的判断比较啰嗦, 但好处就是, 能够根据当前情况选择是否继续向下遍历, 不做无用的搜索. 越早地找到两个节点, 程序就会越早结束.
class Solution {
private:
TreeNode *lca;
TreeNode *tA, *tB;
int findLCA(TreeNode *root) {
if (!root) return 0;
int cnt = 0;
if (root->val == tA->val) ++cnt;
if (root->val == tB->val) ++cnt;
if (cnt == 2) {
lca = root;
return 2;
}
int leftCnt = findLCA(root->left);
if (leftCnt == 2) return 2;
cnt += leftCnt;
if (cnt == 2) {
lca = root;
} else {
int rightCnt = findLCA(root->right);
if (rightCnt == 2) return 2;
cnt += rightCnt;
if (cnt == 2) {
lca = root;
}
}
return cnt;
}
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *A, TreeNode *B) {
if (!root || !A || !B) return NULL;
lca = NULL;
tA = A, tB = B;
findLCA(root);
return lca;
}
};
时间复杂度: O(n)
空间复杂度: O(logn)
(考虑到递归的堆栈消耗)
解法2 后序非递归DFS
写了递归的, 自然就想写个非递归的.
思路是:
- 在碰到第一个节点的时候让
LCA_PTR
指向当前节点, 真正的LCA一定是*LCA_PTR
本身或者上游节点. - 每次路过
*LCA_PTR
的父节点的时候,LCA_PTR
上移指向父节点. (前序和中序非递归遍历中, 路过就是访问; 后序非递归遍历中, 路过不一定是访问) - 当碰到第二个节点的时候,
LCA_PTR
停留的地方就是真正的LCA.
但是写着写着才注意到, 步骤2决定了必须要用后序遍历才行. 因为前序和中序遍历中, 找到目标节点时, 父节点的遍历可能已经结束了.
要注意的是步骤2中的路过, 即
if (lca && root->left == lca || root->right == lca) {
lca = root;
}
应该紧随root = s.top()
, 而不是放在”访问当前节点”的地方.
class Solution {
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *A, TreeNode *B) {
if (!root || !A || !B) return NULL;
TreeNode *lca = NULL;
stack<TreeNode*> s;
TreeNode *prev = NULL;
int cnt = 0;
while (root || !s.empty()) {
while (root) {
s.push(root);
root = root->left;
}
root = s.top();
if (lca && root->left == lca || root->right == lca) {
lca = root;
}
if (!root->right || root->right == prev) {
s.pop();
if (root->val == A->val) {
++cnt;
if (cnt == 1) lca = root;
}
if (root->val == B->val) {
++cnt;
if (cnt == 1) lca = root;
}
if (cnt == 2) return lca;
prev = root;
root = NULL;
} else {
root = root->right;
}
}
return NULL;
}
};
时间复杂度: O(n)
空间复杂度: O(n)
解法3 单链表的交点
当每个节点有指向父节点的指针时可以用这种方法. 题中的TreeNode
结构没有parent
指针, 用map
构造就好了.
class Solution {
private:
map<TreeNode*, TreeNode*> parents;
void buildParents(TreeNode *root) {
if (root->left) {
parents[root->left] = root;
buildParents(root->left);
}
if (root->right) {
parents[root->right] = root;
buildParents(root->right);
}
}
int depth(TreeNode *node) {
int d = 0;
while (node) {
node = parents[node];
++d;
}
return d;
}
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *A, TreeNode *B) {
if (!root || !A || !B) return NULL;
parents.clear();
parents[root] = NULL;
buildParents(root);
int da = depth(A), db = depth(B);
if (da < db) {
swap(da, db);
swap(A, B);
}
while (da > db) {
A = parents[A];
da--;
}
while (da && A != B) {
A = parents[A];
B = parents[B];
da--;
}
return A;
}
};
时间复杂度: O(n)
空间复杂度: O(n)
解法4 双堆栈
回顾了一下LeetCode上半年前写的代码, 发现当时思路还蛮清晰. 思路类似解法2, 但是多用一个堆栈表示从root
到LCA的路径, 好处就是代码更清晰一些, 而且中序遍历即可.
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
stack<TreeNode*> s;
stack<TreeNode*> path;
bool foundFirst = false;
TreeNode *lca = NULL;
while (root || !s.empty()) {
while (root) {
if (!foundFirst) {
path.push(root);
}
s.push(root);
root = root->left;
}
root = s.top();
if (!path.empty() && root == path.top()) {
lca = root;
path.pop();
}
s.pop();
if (root == p || root == q) {
if (foundFirst) {
return lca;
}
foundFirst = true;
}
root = root->right;
}
return NULL;
}
};
时间复杂度: O(n)
空间复杂度: O(n)
解法5 前序递归DFS, 指针
这代码应该是当初看了LeetCode Discuss中的解答写出来的. 相对于解法1, 代码很简洁, 用指针的回传表达是否找到目标节点. 要说缺陷, 就是扫描的点比解法1多一些.
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (!root || root == p || root == q) return root;
TreeNode *left = lowestCommonAncestor(root->left, p, q), *right = lowestCommonAncestor(root->right, p, q);
return left && right ? root : (left ? left : right);
}
};
时间复杂度: O(n)
空间复杂度: O(logn)